
“If builders built buildings the way
programmers wrote programs, then the
first woodpecker that came along would
destroy civilization.” - Gerald Weinberg
Overview
Software architecture has value in itself
and is a critical factor determining the
total cost, maintainability and success of
a software development project. But in
reality many software projects fail or
never reach their true potential due to the
erosion or lack of architecture.
After describing minimal requirements for
designing and maintaining an architecture
this paper will highlight the areas where
architecture provides real value for a
software project. It will also look at
software architecture in the context of an
agile project.
In the scope of this paper I define
(software-) architecture as the
decomposition of a software system into
smaller manageable units (called
architectural artifacts) and establishing
rules defining allowed and forbidden
dependencies between those artifacts.
The artifacts on the highest level can be
decomposed again into smaller lower-
level artifacts and this process should go
on recursively until the typical size of an
artifact is small enough so that it can be
easily maintained and understood by a
single person. A good software
architecture always tries to minimize the

number of allowed dependencies
between artifacts and never allows cyclic
dependencies between artifacts. The
architecture therefore describes the
large-scale structure of a software
system.
Designing an Architecture
The next logical step after gathering the
initial requirements for a project is the
design of an initial architecture. Like it is
often impossible to gather all
requirements at the beginning of a
project, it is also not necessary to have a
complete architecture that describes
every detail and aspect of the system
before coding begins. But a couple of
important questions have to be answered
upfront:
• What are the major components of my

system and how do they depend on
each other? (These are your
architectural artifacts on the highest
level)

• How do I organize my code?
• How do I build my system?
• What will be the artifacts created by the

build?
• How do I organize cross-cutting or

general functionality like persistence,
logging, authentication etc. ?

• What is my general strategy for
technical layering, e.g., where do I put

The Value of Architecture
Alexander von Zitzewitz

hello2morrow Inc.

Page 1

my application logic, how do model
objects interact with each other, etc.?

• How and where do I validate data
entering my system from the outside,
how do I keep my system secure?

• If scalability is an issue, what are my
scalability options?

• What are my deployment options?
The last two questions do not mean that
you already have to answer them in
detail, but you should have scalability and
deployment in the back of your mind,
because these aspects might very well
have a big influence on the organization
of your code.
Identifying the major components will
probably help you to decide about the
physical layout of your project and how
you structure it in your IDE.
The code organization aspect is also very
important because it determines the
physical layout of your project in the
developers workspace. It defines rules
about naming and structuring packages
and/or directories and how architectural
artifacts are mapped to this physical
layout.
There is nothing wrong with keeping it
simple at the beginning, things will get
more complex later anyway. As your
project grows you will refine the initial
large scale architecture by decomposing
the highest level artifacts into smaller
sub-artifacts.
If you are using Java, many of those
questions are already answered for you,
if you build your system on the base of

the Spring Framework, which is highly
recommended for Java enterprise
applications. If you are using Ruby on
Rails, most of those questions are also
already answered by the design of the
rails framework.
When designing your architecture,
flexibility should always be an important
goal. Since we usually do not know all
the requirements at the beginning of the
project and requirements change
frequently anyway we have no other
choice than trying to keep our
architecture flexible so that it will be able
to accommodate unforeseen features.
Maintaining an Architecture
After you have designed the initial
architecture your biggest problem will be
to make sure that it is actually reflected
and respected by your code base. Many
projects start with a solid initial
architecture, but fail to ensure that the
code is actually based on it. Architecture
validation should be part of your build
process. If you do not enforce
architecture and validate it in an
automated way it is very likely that your
system will suffer from growing
architectural erosion.
Architecture as an Enabler
If you invested the effort to design an
initial architecture you should be able to
reap the first benefits when coding starts.
For every piece of code added it should
be clear to which architectural artifact it
belongs. Knowing that also defines on
which other pieces of code you can
depend upon and what other parts of
your system should not be used by the

The Value of Architecture

Page 2

new code. Moreover you know exactly
where to put the source code within the
project structure.
If you stumble upon a new class (or other
piece of code) where you donʼt know
where it belongs in the architecture it
means you will have to refine or change
your architecture or think about a different
way to add this specific functionality to
your project.
While this approach requires you to think
a bit more upfront and make certain
decisions early in the process it also
greatly simplifies the daily development
work. That already provides value on its
own, because it improves productivity
and ensures that everybody in the team
works on the basis of the same
architectural rules and principles, which
greatly increases the probability of a
successful outcome.
More value is provided by the fact that
the code is easier to read and
understand, because it is well organized
and structured. Adding new features
usually requires fewer code changes,
because a clear structure also helps to
minimize coupling. Fewer code changes
also mean fewer regression bugs and
therefore a better quality.
Another important example for the value
of architecture are security aspects. If
your system has a good structure the
interfaces where external data can enter
your application should be pretty obvious.
If you know that your system does not
contain any unwanted dependencies (by
validating your architectural rules in the
build process) you can focus your

scrutiny on these interfaces and make
sure that all data coming from the outside
is properly validated.
Without that certainty maintaining a high
level of application security is much
harder, because it requires you look at
every potential data flow path in your
whole system. It is easy to see that this
requires a much bigger effort than
maintaining a clean architecture and
structure from the very beginning.
In other words, designing and maintaining
a good and flexible architecture enables
you to focus the energy of the
development team on adding value to
your application. It enables you to add
new functionality with a reasonable effort.
It enables you to keep the application
productive for a long time while keeping
the maintenance cost under control.
A broken architectural structure on the
other hand works like sand in the
gearbox. Since you avoided the effort to
keep the architectural structure in good
shape, you saved some time, but you
also accumulated structural debt. Like
debt in the real world structural debt
requires interest payments in the form of
increased effort for everything you do on
your system. Moreover increasing
structural debt makes your “credit rating”
go down, so that the interest rate you
have to pay increases to unsustainable
levels. The point of bankruptcy is reached
when the effort for code changes
becomes prohibitively high so that your
only choice is to throw the old system
away and start from scratch. In that case
you defaulted on your structural debt.

The Value of Architecture

Page 3

There are many real life case studies and
examples out there that prove that
accumulating structural debt can only
give you short term benefits. Sometimes
you have no other choice to meet an
important deadline. But always keep in
mind that you have to pay it back and the
sooner you do it, the less interest you will
have to pay.
Architecture and Agility
Agile development methods gain more
and more traction in the software industry
and there are many good reasons for the
success of agile methods. Agile
development is centered around “User
Stories”, software usage scenarios that
bring value to the end user. Moreover the
process is based on short iteration
cycles, where every iteration is supposed
to produce tangible user value. Since
software systems are built for real users it
is certainly the right idea to focus the
development process on the creation of
tangible user value and early user
feedback.
A problem can occur when the agile
methodology is taken to the extreme
where “User Stories” are considered as
free floating independent items. “User
Stories” are not floating in space, they all
live in a context and usually have many
obvious and subtle functional and
technical dependencies between them.
A pure agile approach would pick the
user story with the highest perceived user
value as the first thing to be implemented
in the new system. If you look at that
“User Story” in isolation, the best way to
implement it might be very different from

the best way to implement it when taking
other associated user stories and the
context of the whole system into
consideration. Therefore it is a smart idea
to put the “User Story” into the context of
the whole system and other “User
Stories” that need to be implemented.
From a technical point of view the context
is the architecture of the software system.
With a solid architecture in place it is
easy to implement the “User Stories”
within the frame of the architecture. But of
course the design of that architecture
also requires that some key “User
Stories” and the overall system context
are known by the designer.
If you, on the other hand, decide to make
architectural decisions on the fly like
some people from the agile camp
suggest, you might quickly come to a
point, where your architectural structure
becomes messy because you made
architectural decisions without sufficient
context information. Of course it is
possible to refactor your code to improve
your architecture, but with growing
system size this option becomes less and
less practical and realistic.
The trick is to find a balance between
providing enough architecture upfront
without loosing too much time with
thinking about problems that can be
solved further down the road.
The approach of combining just enough
upfront architectural design with agility is
called “Architectural Agility” and is
presented nicely in [BRO], a paper from
the Carnegie Mellon Software
Engineering Institute.

The Value of Architecture

Page 4

http://livepage.apple.com/
http://livepage.apple.com/

References
[BRO]"http://www.crosstalkonline.org/
storage/issue-archives/
2010/201011/201011-Brown.pdf

The Value of Architecture

Page 5

http://www.crosstalkonline.org/storage/issue-archives/2010/201011/201011-Brown.pdf
http://www.crosstalkonline.org/storage/issue-archives/2010/201011/201011-Brown.pdf
http://www.crosstalkonline.org/storage/issue-archives/2010/201011/201011-Brown.pdf
http://www.crosstalkonline.org/storage/issue-archives/2010/201011/201011-Brown.pdf
http://www.crosstalkonline.org/storage/issue-archives/2010/201011/201011-Brown.pdf
http://www.crosstalkonline.org/storage/issue-archives/2010/201011/201011-Brown.pdf

