How BMW Improved Software Quality and Agility of a Mission
Critical Software System

About BMW:

With the brands, BMW, MINI and Rolls-Royce Motor Cars, the BMW Group has its sights set
firmly on the premium sector of the international automobile market. To achieve its aims,
the company deploys its strengths with an efficiency that is unmatched in the automotive
industry. From research and development, to sales and marketing, BMW Group is committed
to the very highest in quality for all its products and services. The company's success to date
is proof that this strategy is the correct one.

About helloZmorrow

Hello2morrow is a leading provider of comprehensive static analysis tools for the validation
and enforcement of rules related to architecture, structure and technical quality of software
systems. Our products support Java, C#, C/C++ and other languages, and are used by more
than 300 clients all over the world.

The Challenges:

In 2012 BMW decided to redevelop their “Integrated Aftersales Platform” (IAP). Integrating
required new features and changes into the old version of the system was not considered to
be feasible. IAP-1 already had a significant defect backlog and it was very difficult to change
the system without introducing new defects. The system was suffering from severe
structural erosion and high levels of technical debt.

The new system has a staff of about 75 developers, 30 of them working with Java. A key goal
for the new system was to avoid running into the same problems that crippled its
predecessor. In particular, the following challenges had to be met:

¢ New releases every 4 months

¢ Strict rules for architecture and code quality standards that would be enforced
in an automated fashion

¢ Contracts with 3rd party development service providers now had to include
architecture rules and quality standards. Rule violations had to be fixed in the
scope of the provider warranty.

¢ Avoid the buildup of a defect backlog. All known defects had to be fixed with the
upcoming release, at the latest.

The Solution:

First, acceptable code quality standards had to be defined. It became obvious that it would
only make sense to enforce standards that can be checked efficiently and, ideally, in a fully
automated way. It was also considered important that developers not be overwhelmed with
too many rules and guidelines. The goal was to improve the quality of project outcomes
without slowing down the development process in a significant way.

The standards had to cover the following aspects:

¢ Coding and formatting rules

o Testing and test coverage

¢ Software metrics

e Architecture rules and dependency structure
Each of these aspects needed tool support to ensure the automated enforcement of rules.
The first two aspects could be covered easily with the help of Open Source tools like PMD,
CheckStyle, FindBugs and Cobertura. These tools are conveniently combined by

“SonarQube”, another open source tool. SonarQube acts as an aggregator which allows
various kinds of code analysis tools to provide data to a unified dashboard.

There was no viable open source option for the last two aspects, so BMW needed a
commercial tool to cover the gap. Sonargraph had already been used successfully in the
context of other smaller projects and could also be integrated with SonarQube. Therefore,
the decision was made to use Sonargraph in all stages of the development of [AP-2.

While SonarQube collects data daily during the nightly build, Jenkins is used to check coding
and architecture rules with every commit. Rule violations will break the build. Developers
will receive an email notification from the build server so that the problem can be fixed
while it is still easy to fix.

Here are the code quality standards used by BMW to enforce a high level of code quality:

Rules to limit architectural debt:
¢ No architecture violations (Sonargraph)
¢ No dependency cycles (Sonargraph)
¢ Limit for metric “Unassigned Types”: 0 (Sonargraph)
Rules to verify solid test coverage:
¢ Branch code coverage: at least 50% (SonarQube)
Rules regarding code complexity and comprehensibility:
¢ Number of SonarQube findings: 0 (SonarQube)
¢ Limit for metric “Cyclomatic Complexity”: 20 (Sonargraph)
¢ Limit for metric “Average Component Dependency”: 20 (Sonargraph)
¢ Limit for metric “Lines of Code” per compilation unit: 700 (Sonargraph)
Once the technical infrastructure was put in place to check and enforce rules, projects were
reviewed frequently for compliance. This usually took place once every two weeks, and was
done by the Quality Assurance Manager, a role that was specifically created to ensure the
enforcement of the above standards. The review process was driven by the quality data
derived from the SonarQube dashboard and Jenkins build results. If standards were not met
the issue is first monitored by an issue tracking system. If an issue is not resolved within a

limited time frame, it gets escalated to the attention of the project manager. Additionally,
any application that fails to meet the quality standards does not go into production.

An important aspect of successfully implementing software development based on quality
standards is to make sure that all stakeholders are on board. This begins with senior
management being fully in support of the new approach, and then moves on to the

Version unspecified - 22 Oct 2013 06:18 (_4 over 30 days

Relative Package Cyclicity

0.0%

0 biggest cycle group size

0 cyclic packages (0.0%)

0 type dependencies to cut (approx.)
0 references to remove (approx.)

Architecture

0 violating type dependencies
0 violating types (0.0%)

Highest ACD A
45.7

6.7 Highest NCCD

640,005 byte code instr. &

Warnings A

EXN total wamings

0 cycle groups

Unit tests coverage
33.0% (-1.1)

38.0% line coverage (-1.2)
25.0% branch coverage (-0.9)

On new code

25.5%

30.2% line coverage
15.5% branch coverage

Configure widgets

Unit test success

100.0% (+0.0)

0 failures (+0)

0 errors (+0)

354 tests (+37)

0 skipped (+0)

12:07 min (+1:23 min)

Manage dashboards

0 violating references A duplicate code blocks Violations Ay Blocker 0 (1)
2 ignored violations 7] threshold wamings 1,768 (+79) 2 Critical 174 (4) |
<] workspace warnings Added: 195 A Major 912 (+58) [
0 unassigned types (0.0%) 42 ignored wamnings Removed: 116 ® Minor 654 (+20) -
Rules compliance v Info 28 (+6) 1
0,

Lines of code Classes 97.7% (+0.0)
187,994 (+12,558) 3,017 (+150)
231,719 lines (+14,984) 170 packages (+12) o
61,792 statements (+4,610) 16,978 methods (+823) Metric History 23 Sep2013 22 0ct2013
2,379 files (+123) 979 accessors (+124) unspecified

Lines of code 175,436 187,994
Comments Duplications Highest ACD 440 457
5.3% (0.2) 2.1% (+0.4) Threshold Wamnings 2 3
10,444 lines (+174) 4,763 lines (+1,047) Byte Code Instructions 604,615 640,005
5.5% docu. API (+0.0) 436 blocks (+29)
11,641 undocu. API (+419) 98 files (+8) HighestNCCD 55 57

Highest Relative ACD 528 528
Complexity
1.8 /method (+0.0) 20000 Most new violated rules | Any severity More

10.2 /class (+0.2)

5000

@ Avoid commented-out lines of code (+30)
13.0 sile (+0.3) o e ——
Total: 30,883 (+2,123) . & Anon Inner Length (+19) N
(@ Methods ()Files

& Loose coupling (+18)

4 Simplify Conditional (+12) N
Events All

v Unused formal parameter (+11)
22 Oct 2013 Version unspecified

Typical SonarQube Dashboard featuring findings from Sonargraph and other tools

appropriate training of developers and architects. It is important to explain the established
rules so that the benefits of a development approach centered on quality is clearly
understood. Also important, is selecting development partners based upon their
willingness to comply with the prescribed standards.

As arule, “quality before time” was implemented by senior management, meaning that it is
more important to enforce quality rules than it is to rush to meet deadlines. This makes it
mandatory for a software system not only to pass all functional tests, but to also comply
with all quality rules before it can go into production.

Of course, sometimes situations will occur that make sacrificing of quality standards a
necessity for reasons outside of the technical scope of the project. In such cases it is
important to plan for a repair phase after the initial goal has been met. A clean foundation
and stable structure also makes repairs easier.

The Results:

All stakeholders consider the introduction of a quality centered development process into
IAP-2 to be great success.

In particular, with comparison to IAP-1, the following improvements have been achieved:

e Significantly shorter release cycles. IAP-2 is delivering a full release every 4 months.
IAP-1 needed between 12 and 15 months between releases with a tendency toward
longer periods between releases. This is especially significant when taking into
consideration the “quality before time” rule.

¢ The number of functional defects per function point has been reduced by a factor of 10.

o All defects are fixed much faster, usually within the next sprint. In IAP-1 there was a
growing pile of defects moved from release to release.

¢ Since code quality and architectural rules are now part of the contract, BMW does not
have to pay for fixes of rule violations anymore. They have to be fixed in the context of
the development service provider warranty. The software will only be approved by
BMW if all contractual quality standards are fully met. This is automatically verified by
scanning the code base with Sonargraph and other related tools.

e (Greater development efficiency and lower maintenance effort make space for new
applications and improved functionality. Improved agility!

¢ No more panic mode. In [AP-1 the most critical issues had to be fixed by specialized task
forces with direct reporting to the BMW board of directors. Avoiding these kinds of
situations is not only good for company morale, it is also good for bottom line of the
business.

Since a clean software architecture is a precondition for many other aspects of code quality,
Sonargraph is considered to be a mission critical part of the tool chain used to enforce
quality standards for IAP-2.

Related Research:

Capers Jones wrote a highly recommended book about “The Economics of Software Quality”.
The gist of it is nicely condensed in the following paragraph from an interview with the
author:

»And not only for software is quality free, but it actually has a positive return on investment. So
by emphasizing quality in software, you get more than just a free ride. You actually gain
market share, you lower your warranty costs, you shorten your development schedules, and
you improve team morale. You get a relatively powerful return on investment for a relatively
small outlay of cash and energy. So I think software can actually go beyond the concept of
"quality is free,” to the concept that "quality pays a handsome profit.”

The interview can be found here:

http://www.informit.com/articles/article.aspx?p=1824791
http://www.informit.com/articles/article.aspx?p=1824792

Contacts:
BMW AG
Erwin Wagner

Email: erwin.Wagner@bmw.de
Web: hhtp://www.bmw.de

hello2Zmorrow
Alexander von Zitzewitz

EMail: a.zitzewitz@hello2Zmorrow.com
Web: http://www.hello2Zmorrow.com

http://www.informit.com/articles/article.aspx?p=1824791
http://www.informit.com/articles/article.aspx?p=1824792
mailto:erwin.wagner@bmw.de?subject=
hhtp://www.bmw.de
mailto:a.zitzewitz@hello2morrow.com
http://www.hello2morrow.com

