
“If you donʼt know where youʼre going,
youʼre unlikely to end up there.” - Forrest
Gump

Overview
If you are or feel responsible for a non-
trivial software project with 3 or more
people working on it and want to make it
a smashing success, this document is for
you. It will ask a couple of simple
questions about your project, that you
should be able to answer with a clear
“yes”. If your answer is “no” or “maybe” it
gives you ideas how you might come to a
“yes”.
The list might contain silly questions, but
the purpose of a checklist is to check
even trivial things. It happened in the past
and it will probably happen again in the
future that multi-million dollar software
projects fail because somebody forgot to
ask some of the sillier questions in this
list at the beginning of the project.
The document is split into several
sections covering organizational and
technical aspects of a project. Every
section contains a couple of questions
that you should be able to answer with a
yes.

Project Organization
Are you using any kind of a
development methodology or
process?
This can be Scrum [SCR], any variant of
agile processes, any variant of RUP
[RUP], Kanban [KAN] or even something
you invented yourself. The main purpose
of a development methodology is to
organize work into manageable units and
to enable you to track the progress. It
also helps with risk assessment and
management by identifying the most risky
and/or difficult parts of the project.
Usually those are the ones you want to
address first.
Another advantage is that modern
methodologies have formalized points of
communication where team members
can address problems and discuss
solutions for those problems on a regular
base.
If you donʼt have a process you might
want to have a look at agile processes
like Scrum or Kanbas. Nowadays almost
everybody agrees that your development
process should be an iterative process
with iterations not lasting longer than 4
weeks. At the end of every iteration there
should be a presentable result in form of
implemented project features.

Project Sanity Checklist
Alexander von Zitzewitz

hello2morrow Inc.

Page 1

http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/Kanban_(development)
http://en.wikipedia.org/wiki/Kanban_(development)

Does everybody in the team know and
understand the methodology?
The most efficient process is of no use if
people donʼt adhere to it or donʼt
understand it. Everybody joining the team
should get some kind of a process
training or at least a decent explanation
of how he/she should apply the
methodology.
Are the initial requirements (or user
stories) clear and understood by all
team members?
This question is not as silly as it might
seem. Many projects fail because the
requirements are fuzzy and not well
defined. Donʼt start a project without
having a clear understanding of the initial
set of requirements. That does not mean
that you have to know all requirements
before you start working on your code,
because this would require something
like a waterfall methodology. But the
initial set of requirements must be clear
for everybody in the team.
Do you know who is responsible for
the architecture and technical quality
of the project?
This is a tricky question, because
basically you have to be able to answer
who will get the blame if the project fails
for technical reasons. Of course you can
only blame a person if he or she also had
the power to move things into the right
direction.
In many organizations you will find a
technical architect, but the responsibility
for the technical success of a project is
considered to be shared by the whole

team. In case of a failure everybody will
most likely agree that the project failed
because of outside factors like
management pressure or fuzzy
requirements (see question above). This
might be very convenient, but
unfortunately it is not at all helpful in
ensuring a positive outcome.
I recommend that the technical architect
is the person taking the responsibility for
the technical quality and viability of the
project. This also means that he or she
must have the power to establish and
enforce technical rules and guidelines. It
does not mean that those rules and
guidelines will be dictated by the
architect. Usually the team should agree
on a set of rules and guidelines and the
role of the architect is to make sure that
those rules are actually respected during
the development and that rule violations
are addressed in a timely manner.
If you prefer the model of shared
responsibility you still need to designate a
person who ensures that those commonly
accepted rules are respected during the
development phase, the person who
looks after the “big picture”. In the end
that means that this person will more or
less take over the responsibility for
architecture and technical quality
unofficially - so why not make it official in
the first place.
This job is certainly not always easy
because it requires some authority to
enforce the rules and also the ability to
screen the team from direct management
pressure. It also requires the ability to
explain to the stakeholders why certain

Project Sanity Checklist

Page 2

features have to be delayed for the sake
of the technical integrity of the project.
From time to time resources will be
needed to refactor the code and to pay
down technical debt (fixing rule
violations).

Quality and Design?
Do you have rules for code formatting
and naming conventions?
In a team it is very helpful, if everybody
uses the same naming conventions for
variables and types and also formats the
code in the same way. It makes it much
easier for everybody to read the code.
Most modern IDEʼs provide an auto
format feature that will format the code
according to a configurable formatting
convention.
Do you have a large scale architecture
definition for your system?
Managing the dependencies between the
different parts of your system is probably
the most important task of a software
architect. Many project failures can be
tracked down to code dependencies
getting out of control. When you start a
new project you should at least be able to
identify the major components, layers and
subsystems of your system. Major
components can usually be mapped to
projects or modules in your IDE. Layers
and subsystems should be reflected in
the physical organization of your code.
Moreover you should be able to define
the allowed dependencies between the
elements defined before making sure that

there are no cyclic dependencies
between them.
The large scale architecture should be
available as a diagram to all team
members and everybody should
understand the architecture and the
dependency rules deriving from it.
Usually the architecture will be refined or
modified as the project progresses. So it
is not required to have a complete
architecture definition at the beginning of
the project. But for every iteration the
architectural rules needed for that
iteration must be defined in a formal way.
There is nothing wrong with starting with
a simple set of basic architecture rules
and refining them later.
The concept and importance of large
scale software architecture is described
nicely in [AUD] and [LSD].
Do you have a commonly agreed set
of quality related programming rules?
Programming rules are essential to
maintain a certain level of technical
quality in a software system. Typical rules
would be “donʼt let a source file grow over
x lines” or “do not allow empty catch
blocks”. It is better to have a fairly small
set of commonly accepted and useful
rules than to have a large set of rules that
nobody is able to remember of enforce.
The DZone architecture essentials
reference card describes a set of rules
that have proven to be effective in many
projects [AER].

Project Sanity Checklist

Page 3

Do you check and enforce architecture
and dependency rules automatically?
This is often overlooked, but nevertheless
quite important. The most elegant and
beautiful architectural blueprint is useless
if it only exists on paper and is not
reflected by the code base. And if you
donʼt check conformance of your code to
the blueprint it is safe to assume that rule
violations will creep in at a rate that will
grow over time. For Java you can find
some some basic automated dependency
checking in Sonar [SON], which is an
open source tool that I recommend
highly. For other languages or if you want
to have more powerful features like
architecture and dependency
visualization or IDE integration you have
to look at commercial tools, e.g. our own
flagship product SonarJ [SNJ], which
integrates nicely with Sonar. Since the
cost of structural erosion is so high, these
tools provide real value by minimizing
your technical debt so that they are
definitely worth the money you have to
invest into them. Donʼt think that you can
get away with manual checking. This only
works for very small projects.
Do you check and enforce your
programming rules automatically?
Your rules are of no use if you do not
check and enforce them in some
automatic way. Java programmers are
better of because there are a lot of open
source programming rule checkers
available. Again I recommend Sonar,
because it works as a umbrella tool for
quality management integrating all the
popular open source rule checkers. And

the best thing is that it can be expanded
by writing plugins. For other languages or
if you want very specific checks you will
have to look at commercial tools.
Do you measure your technical quality
on a regular base?
If you were able to answer the two
previous questions with “yes”, then you
have everything you need.
The number of rule violations reported by
the automated checks gives you a good
indication about the amount of
accumulated technical debt and the
overall technical quality of your project.
Do you give your team the time
needed to cleanup rule violations on a
regular base?
If the number of violations gets too high it
is wise to use a good part of an iteration
for code cleanup (pay back technical
debt). Of course sometimes your
deadlines might not give you the time
needed to do that and it is a deliberate
choice to increase technical debt to meet
a deadline. Just make sure that you keep
technical debt under control and use time
and resources to reduce it on a regular
base. Otherwise the interest payment
(additional effort on code changes
caused by increased complexity) will
reduce your team productivity
significantly.

Project Sanity Checklist

Page 4

http://www.sonarsource.org/
http://www.sonarsource.org/
http://www.hello2morrow.com/products/SonarJ
http://www.hello2morrow.com/products/SonarJ

Technical Environment
Do you have a version control
system?
Ok, I admit this question should not even
be asked, but it is a checklist after all.
Should you answer with “no” there are
lots of excellent and free options
available (e.g. Subversion or Git).
Can you build your system outside of
the IDE?
It must be possible to build your system
without any user interaction from the
sources checked out from the version
control system (VCS). If you canʼt build
without the IDE you will have to create a
build script or a makefile. For Java you
can use Ant or Maven, for the C family of
languages you should use make, nmake
or msbuild. Other languages usually
also come with tools for building and
deploying systems.
Do you have a build server?
Having a build server is very useful
because it allows you to build the
complete system after each change
committed to the version control system,
but at least once per night (nightly build).
The nightly build is also an ideal place to
run tools that automatically measure
quality and rule compliance of the code.
Again, if you donʼt have it set up there are
excellent open source build servers
available. Two recommendations are
Hudson [HUD] and Apache Continuum
[CON]. They also are able to build non
Java systems by running any shell script.

Do you have automated tests and are
you able to run them automatically
with your build script?
Every project should cover all complex
code sections with unit tests. The tests
should be run automatically at least once
per night. If a change causes a test case
to fail it “breaks” the build. Of course you
want to know that as early as possible.
Most modern programming languages
have unit test frameworks available for
free.

References
[SCR]"http://en.wikipedia.org/wiki/Scrum_
(development)
[RUP]"http://en.wikipedia.org/wiki/
IBM_Rational_Unified_Process
[KAN]"http://en.wikipedia.org/wiki/
Kanban_(development)
[SON]"http://www.sonarsource.org/
[SNJ]" http://www.hello2morrow.com/
products/SonarJ
[HUD]"http://hudson-ci.org/
[CON]"http://continuum.apache.org/
[AUD]"Applying UML And Patterns, Craig
Larman, Prentice Hall 2002
[LSD]" Large-Scale C++ Software Design,
John Lakos, Addison-Wesley 1996
[AER]"DZone Architecture Essentials
Refcard

Project Sanity Checklist

Page 5

http://hudson-ci.org/
http://hudson-ci.org/
http://continuum.apache.org/
http://continuum.apache.org/
http://en.wikipedia.org/wiki/Scrum_(development
http://en.wikipedia.org/wiki/Scrum_(development
http://en.wikipedia.org/wiki/Scrum_(development
http://en.wikipedia.org/wiki/Scrum_(development
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/Kanban_(development
http://en.wikipedia.org/wiki/Kanban_(development
http://en.wikipedia.org/wiki/Kanban_(development
http://en.wikipedia.org/wiki/Kanban_(development
http://www.sonarsource.org
http://www.sonarsource.org
http://www.hello2morrow.com/products/SonarJ
http://www.hello2morrow.com/products/SonarJ
http://www.hello2morrow.com/products/SonarJ
http://www.hello2morrow.com/products/SonarJ
http://hudson-ci.org
http://hudson-ci.org
http://continuum.apache.org
http://continuum.apache.org

